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The standard model of Mn doping in GaAs is subjected to a coherent potential approximation �CPA�
treatment. Transport coefficients are evaluated within the linear response Kubo formalism. Both normal and
anomalous contributions to the Hall effect are examined. We use a simple model density of states to describe
the undoped valence band. The CPA band structure evolves into a spin split band caused by the p-d exchange
scattering with Mn dopants. This gives rise to a strong magnetoresistance, which decreases sharply with
temperature. The temperature �T� dependence of the resistance is due to spin-disorder scattering �increasing
with T�, CPA band-structure renormalization, and charged impurity scattering �decreasing with T�. The calcu-
lated transport coefficients are discussed in relation to the experiment, with a view of assessing the overall
trends and deciding whether the model describes the right physics. This does indeed appear to be the case,
bearing in mind that the hopping limit needs to be treated separately, as it cannot be described within the band
CPA.
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I. INTRODUCTION

Magnets, which can be made using semiconductors by
doping with magnetic impurities, are potentially very impor-
tant new materials because they are expected to keep some of
the useful properties of the host system. One important ques-
tion is how much of the “doped semiconductor” band struc-
ture does the system still have? Is it a completely new alloy
or does the system still behave like a doped semiconductor,
which can, for example, be described using Kane theory, as
taught in standard textbooks.1 Many of these questions have
been seriously investigated in extensive recent reviews.2–5

The objective of this paper is to present a simple and mostly
analytically tractable description of the magnetism and trans-
port properties of GaMnAs. We need a theory which captures
the essential physics, can be parametrized, and can be ap-
plied to magnetic nanostructures without having to carry out
ab initio calculations each time some parameter has changed.
Previous theories of GaMnAs and related materials have
been either computational or semianalytical. However, the
treatment has often been split into three parts: magnetism,
resistivity, and magnetotransport have been treated sepa-
rately. Here, we show that the magnetism and transport can
be treated on the same footing using a one-band model. The
one-band model is of course not enough to explain the opti-
cal properties. However, we show that magnetism, spin, and
charged impurity scattering can be formulated in the same
framework, using the coherent potential approximation
�CPA� and a generalization thereof. In this paper, we focus,
however, only on the magnetism and spin scattering aspects
and leave the computation of the charged impurity scattering
and the full quantitative comparison to a later paper. One of
the most difficult and controversial aspects for all conducting
magnets is the origin of the anomalous Hall effect �AHE�.
This is why we have devoted a section to remind the reader
of the basic definitions and results. The full history of the
AHE is given in Ref. 3.

We focus on GaMnAs as a much-studied prototype. It is
now generally accepted that the observed ferromagnetic or-

der of the localized spins in Mn-doped GaAs is due to Mn
impurities acting as acceptor sites, which generate holes.
These are antiferromagnetically coupled to the local 5 /2 Mn
spins, lowering their energy when they move in a sea of
aligned moments. It is the configuration of lowest energy
because spin-down band electrons move in attractive poten-
tials of spin-up Mn and vice versa. Given that the spins are
randomly distributed in space, the magnetic state is also the
state of maximum “possible order.” Thus, free and localized
spins are intimately coupled. These materials exhibit strong
negative magnetoresistance because aligning the spins re-
duces the disorder, and this lowers the resistance. The degree
to which the magnetization of the spins affects the scattering
process is dependent on the degree to which the magnetic
spin scattering is rate determining for resistance. We shall, in
this paper, only include the spin scattering process in order to
first gain an intuitive understanding of the processes in-
volved.

The “hole mediated” magnetism point of view is not
shared by everyone. Mahdavian and Zunger6 argue that the
mobile hole induced magnetism cannot explain the magne-
tism in high band gap, strongly bound, hole materials such as
Mn-doped GaN. Their model, based on first principles super-
cell calculations, predicts that the Mn-induced hole takes on
a more d-like character as the host band gap increases, mak-
ing the magnetism a d-p coupling property.

The material of this paper is structured as follows. We
first present a short review of the phenomenology of the Hall
effect in magnets. The Hamiltonian which describes the
properties of Mn-doped semiconductors is then introduced.
We then discuss, in more detail, how to formulate transport
in magnetically doped semiconductors. Following that, we
recall how one can calculate the self-consistent CPA self-
energy caused by the spin dependent term in the generally
accepted Hamiltonian, for a one-band system. Once the self-
energy is known, we compute the longitudinal and transverse
conductivities using the Kubo formulas. When the Fermi
level is just above the mobility edge of the hole band, the
Kubo formula is still valid and describes the strong-
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scattering random phase limit. The localized hopping regime
is treated in another paper.7 The CPA equations only need the
density of states of the active free hole band as input. We will
therefore consider the semicircular Hubbard band which re-
produces the correct free hole band edges and is mathemati-
cally convenient for illustrating the effects of band induced
magnetism.

II. HALL EFFECT

The experimentally measured Hall coefficient RH is often
written as

RH = RN + RA,

RA = �a�xx + b�xx
2 �M/Bz, �1�

where a, b are constants and �xx is the resistivity. The first
term, RN, is the normal Hall coefficient and scales with re-
sistivity in the usual way and the second, RA, is the anoma-
lous term, which, in general, can have two components, one
linear and the other quadratic with resistivity2 and is propor-
tional to the magnetization M. The general relation for the
Hall coefficient is

RH =
Re��xy�Bz��

Bz�Re��xx�Bz���2 , �2�

where �xy and �xx denote the transverse and normal conduc-
tivities, respectively, and Bz is the magnetic field.

Karplus and Luttinger8 pointed out that the B field in-
volves the magnetic moment of the material via the internal
magnetization M,

Bz = �0�Hz
ext + �1 − N�M� � Bz

ext + �0�1 − N�M , �3�

where N is the demagnetizing factor. Thus, the magnetization
term is implicit in the normal contribution as a shift in the
magnetic field. However, this form is not normally sufficient
to explain the much larger magnetization contribution ob-
served in ferromagnets.8 Throughout, we shall, for simplic-
ity, suppose a thin film with perpendicular-to-plane magnetic
field and thus take N=1, unless otherwise mentioned.

III. MICROSCOPIC DESCRIPTION

A. Hamiltonian

In this section, we formulate the basic model. The Hamil-
tonian for this Mn-doped “alloy,” which most workers in the
field accept as the correct description,2 is given by

Htot = Hp + Hloc + Hd + Hpd + Hp−B + Hd−B + Hso. �4�

In Eq. �4�, the first term describes the free band holes. In the
local Wannier or tight-binding representation, it is

Hp = �
m,n,s

tmncms
† cns, �5�

with tmn denoting the overlap or jump terms from sites m to
n, cns

† , cns are creation and annihilation operators for a carrier
of spin s at site n, and where the indices include multiband

transfers, if any. In the presence of a magnetic field, the
overlap has a Peierls phase, so that we write it as �assuming
thin film geometry, no internal field effect for a field perpen-
dicular to plane�

tmn = tmn
0 e�−ie/2��Bext·�Rn�Rm�, �6�

where ext stands for external, e is the electronic charge, and
Rn the position vector of site n. The second term in Eq. �4�
describes the diagonal �atomic orbital� energy that the va-
lence band p hole experiences when it is sitting on an impu-
rity site which may or may not be magnetic,

Hloc = �
m,s

Em,�cms
† cms, �7�

where � stands for magnetic �M� or nonmagnetic �NM�.
The third term is the direct exchange coupling between

the Mn d-localized spins, which we neglect here because
when mobile carriers are present, they mediate the exchange
coupling and in the case of a low concentration, the Mn spins
should be, on average, far away from each other. The fourth
term is the antiferromagnetic spin exchange coupling be-
tween the valence p hole and the local d-Mn and ultimately
the reason for magnetism in these materials,9–11

Hpd =
Jpd

2 �
m��NS�

�
s,s�

cms
† �ss� · Smcms�, �8�

where �ss� is a vector containing Pauli’s matrices, i.e.,
��x ,�y ,�z�. The indices s and s� indicate which terms of the
2�2 matrix we are considering. Finally, Sm is the Mn spin
operator at site m. The fifth and sixth terms are the Zeeman
energies of the holes and Mn spins in an external magnetic
field along the z axis, Bz

ext.

Hp−B = −
g*

2
�B�

m
�

s

Bz,m
ext cms

† �ss
z cms, �9�

Hd−B = − 2�B �
m��Ns�

Bz,m
ext Sm

z , �10�

where g* is the effective g factor. Finally, we have the spin-
orbit coupling

Hso = �
m,n

�
s,s�

	s,m
hso
n,s��cms
† cns�, �11�

where

hso =
�

4m2c2� · ��V�r� � p� �12�

and where V�r� is the total potential acting at a point r and
will include both normal crystal host sites, and impurity
sites, and p is the momentum operator. Finally, c is the speed
of light. In the tight-binding representation, disorder is nor-
mally in the diagonal energies. For the spin-orbit term, dis-
order will enter the Hamiltonian through variations in the site
potential.
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B. Spin-orbit coupling

It is generally believed that the spin-orbit coupling is the
cause of the anomalous Hall effect. This is one of the most
fascinating and universal observations made in conducting
magnets. In this section, we briefly discuss the basic phe-
nomenology of spin-orbit coupling. It is useful to recall the
basic premises.

When the Bloch wave function ansatz is inserted into the
Hamiltonian, the spin-orbit coupling produces two new
terms which enter the Hamiltonian for the periodic part of
the wave function unk �nk�r�=unkeik·r,

hso =
�

4m2c2 ���V�r� � p� · � + ���V�r� � k� · �� .

�13�

The first is the usual term and enters the band-structure cal-
culation. The second is called the Rashba term12 and in a
crystal is, in general, less important than the first because in
the nucleus, momenta are larger than the lattice momenta k.

The “Rashba term” is not normally treated in the compu-
tation of unk. However, in a lattice, it may be enhanced. In
the Kane model, Chazalviel13 and De Andrada e Silva et al.14

have shown how to handle the spin-orbit terms in a lattice
and the Rashba term in the presence of a triangular potential
produced by a gate in an inversion layer. In particular, Ref.
14 has shown how to renormalize the coefficient of the
Rashba term and that this term acts when inversion symme-
try is broken in an external field or triangular potential, for
example. The origin of the enhancement of both these spin-
orbit effects can perhaps be understood as similar to the ori-
gin of the change of the effective mass in the lattice. The
spin-orbit energy can be enhanced by the presence of the
lattice, but the enhancement can be very different from case
to case, and needs to be examined in each case separately.
For example, naively speaking, one may consider the spin-
orbit force acting on a particle moving in a slowly varying
potential of longer range than the lattice spacing as a spin
current of an effective mass electron. One can think of the
scattered particle as having an effective mass m* and gener-
ating a spin-orbit interaction which scales as �

4�m*c�2
instead

of �

4�mc�2 . When the particle is scattered from an atomic size
impurity in a lattice, it is forced to come back many times
and spends a longer time on the impurity than in free space.
Leaving aside these intuitive pictures, one can, in any case,
make the analysis quantitative using the Kane Hamiltonian,
which takes the lattice modulation into account in a kind of
renormalized perturbation theory and gives explicit results
for the unk part of the wave function.1 The Kane Hamiltonian
can then be used to treat scattering from an impurity. Thus,
for example, the matrix elements of the position operator
	k
r
k�� are very different for plane wave states and for the
Kane solutions.8,13

In tight binding �TB�, the spin-orbit matrix elements are
calculated using atomic orbitals, with two terms: the intra-
and the interatomic contributions. The magnitude of the
intra-atomic term is just what it would be for the correspond-
ing orbitals on the atoms in question. The interatomic term is

normally small and not included in tight-binding band-
structure calculations. When an electron jumps from site to
site, it experiences a net magnetic field produced via the
cross product of its velocity and the electric field gradient of
the neighboring ions. This field then couples to its spin.
Since it is related to the intersite momentum or velocity, it
depends on the transfer rate tmn where the indices m, n in-
clude a band index m=m ,	. Remember that the velocity �x
direction� operator is given by

vx =
i

�
�

m,n,s
�Rm,n�xtmncms

† cns, �14�

where Rm is the position vector of site m and Rm,n=Rm
−Rn. An enhancement of this spin-orbit energy, if any, has to
be calculated by taking the expectation value of the spin-
orbit term using the calculated Bloch states as one would for
the dispersion relation 
ks and for the effective masses. We
shall examine the spin-orbit coupling in more detail below.

IV. KUBO TRANSPORT EQUATIONS

In order to compute the transport properties of the mag-
netically doped semiconductors in the linear response re-
gime, we need to introduce the Kubo formulas. In this sec-
tion, we show how to compute the transport coefficients.

A. General considerations

The conductivity in linear response to an electric field is
usually written as15–17

��� =
i�e2

�
lim
→0

�
�,�

	�
v�
��	�
v�
��

� − 
� + �� + i

f�
�� − f�
��

� − 
�

,

�15�

where the v� are the velocity operators in the respective
direction �. For a given Hamiltonian, they are derived from
the Heisenberg relation i�v�= �x� ,H� with x� the position
operator. 
�� and 
� are the exact wave functions and energy
levels. The wave functions include any disorder and mag-
netic and spin-orbit couplings. f�
� is the Fermi function and
� is the frequency of the applied electric field; e is the elec-
tronic charge. This formula can now be written in the par-
ticular representation selected, e.g., TB or Bloch states.
Within the band-structure approach for semiconductors, one
would substitute the eight-band k ·p wave functions and en-
ergies into Eq. �15�, include spin splitting through a Weiss
field and spin-orbit coupling, and treat disorder as a lifetime
contribution in the energy levels. In this picture, the doped
semiconductor retains the pure band-structure features, apart
from a complex lifetime shift. We shall use the one-band
CPA for the coupling of the holes to the magnetic impurities.
For the calculation of the ordinary transport coefficients, we
may neglect the spin-orbit coupling. We obtain, for the lon-
gitudinal conductivity of the one-band TB model for �=0
and per spin s,
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	�xx
s � =

e2�

��
� dE−

�f�E�
�E

� � d
X�
��Im�	Gs�E,
����2,

�16�

where

	Gs�E,
�� =
1

E − 
 − �s
, �17�

�s = �s�R� − i�s�I�, �18�

and

X�
� =
1

N
�

k
vx

2�
 − 
k� . �19�

�s�E� is the CPA self-energy for spin state s, to be calculated
self-consistently using the CPA condition and where the ve-
locity and effective masses of the free electron band are
given by

v� =
1

�

�
k

�k�

, �20�

M��
−1 =

1

�2

�2
k

�k��k�

, �21�

where M�� is the effective mass tensor. The CPA self-energy
contains the information on the net spin splitting produced
by the magnetic impurities and the scattering time. It defines
the effective medium which is to be discussed below.

The Hall conductivity, given by the antisymmetric part of
the transverse conductivity,18,19 is somewhat more compli-
cated because the magnetic field has to be dealt with first. To
first order in magnetic field and with one TB band, we find
for the antisymmetric part �referred to by the index a� for
�=0,15,17,18

	�xy
a � =

2e3�2B

3��
�

s
� dE−

�f�E�
�E

� � d
Y�
�

��Im�	Gs�E,
����3, �22�

where

Y�
� �
1

N
�

k
 vx

2

Myy
+

vy
2

Mxx
−

2vxvy

Mxy
��
 − 
k� . �23�

In Eq. �22�, the dispersion relation 
k can be any one-band
structure �any choice of tmn

0 � where 
k is defined through
tmn
0 = 1

N�ke
ik·Rmn
k. As was shown by Matsubara and

Kaneyoshi,18 for a weak magnetic field, the Peierls phase can
be factored out of the Green function and this is why we only
need the Green function �Eq. �17�� that does not include the
orbital effect of the field. The effects of the different phases
�from the tmn and from the Green functions�, after an expan-
sion to first order in the field, are reflected in the topology
dependent term Y�
�. Furthermore, Eq. �22� does not contain
the spin-orbit scattering contribution. It can be included as an
extrinsic effect. In the spirit of the skew scattering Born
approximation19–21 and in the weak scattering limit, we can,

at the end of the calculation, introduce an extra internal mag-
netic field so that the total field entering Eq. �22� is

B = Bz +
m*

e
� 1

�s
�	�z� , �24�

where Bz includes the internal magnetization. However, from
Eq. �3�, for a field perpendicular to plane, N=1. This result,
Eq. �24�, is written in the notation of Ballentine.19 The effec-
tive spin-orbit field depends on the thermally averaged spin
polarization 	�z�, with its sign to be discussed in Sec. IV B,
and 	 1

�s
� is the so-called skew scattering rate. The second

term of Eq. �24� involves, in addition to the sign of the
carrier, the sign of the spin orientation.

Engel et al.21 claimed that the impurity spin-orbit cou-
pling in the lattice environment can be “6 orders of magni-
tude” larger than in vacuum. The large enhancement can
mean that, in some cases, the skew scattering dominates
where there should exist a substantial intrinsic contribution
as well.21,22 This is why developing a way to calculate the
extrinsic contributions to the anomalous Hall effect, as we do
here, is important and useful.

B. Anomalous Hall effect

Let us now show how one can derive such an anomalous
Hall effect, in our formalism �TB approximation�, from the
existence of a spin-orbit coupling and how one can arrive at
the concept of an effective magnetic field, as given in
Eq. �24�.

In tight binding, the spin-orbit coupling is given by Eq.
�11� and V�r� is the total potential experienced by the charge
at point r, with p the momentum operator. The spin-orbit
coupling can be separated into an “intra-” and an “inter-
atomic” contribution by splitting the momentum operator as
p=pa+pinter. For spherically symmetric potentials, the two
terms are given by

Vso = �
i

�i�r�li · � + �
n

��r − Rn��n�r� � pinter� · � ,

�25�

�n�r� =
�

4m2c2��Vn�r − Rn�
r − Rn

� , �26�

where �n�r� is related to the spin-orbit coupling strength.
Here, pinter is the usual zero-field interatomic momentum op-
erator and li is the atomic orbital operator and is often
quenched so that its expectation value is zero, but nondiago-
nal same site interorbital matrix elements can be very
important.23–25

The second contribution in Eq. �25� is due to the inter-
atomic motion and must be evaluated using pinter=mv, where
v is given by Eq. �14� and involves the intersite transfer
energy t and position operator

r = �
m,s

Rmcms
† cms. �27�

Here, we have a spin-orbit coupling only because the particle
can jump to another orbital. When substituting the site rep-
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resentation in the second term of Eq. �25� and assuming
spherical symmetric potentials, either impurity with effective
local charge eZn=eZimp or host eZh, we have

	i
Vso
�2�
j� =

�

4mc2��i��
n,l
 eZn

�4�
0�
r − Rn
3
�r − Rn��l� i

�

� Rljtlj�� · � , �28�

where i is the imaginary number, while 	i
 is the orbital at
site i. The analysis of this term is not trivial and depends on
the lattice and potential distribution in question. If one has
decided that the extrinsic contributions are dominant, then
one only needs to sum around the impurities. In general, the
simplest approach is to take only the largest terms in the
sum, i.e., the diagonal terms l= i. In this case, we get

	i
Vso
�2�
j� = i	i
��
j�tij ,

i	i
��
j� =
�

4mc2��i��
n
 eZn

�4�
0�
r − Rn
3
�r − Rn��i� i

�

� Rij�� · � . �29�

It is convenient to treat this effect as a spin dependent phase
in the transfer, in analogy to the Peierls phase, to first order.
Indeed, to first order ex�1+x, so that we can write i�ij
=ei�ij −1 and Hp+Hso as

Hp + Hso = �
i,j

�
�,��

tij	�
ei�ij
���ci�
† cj��. �30�

Then, we also note that the Rn=Ri and Rn=R j terms in Eq.
�29� are zero after the vector product, leaving the gradient
field contributions due to the nearest neighbors as the largest
of the remaining terms in the n sum. A similar result has been
derived in the context of the Rashba coupling by Damker
et al.26

With Eq. �29�, we can rewrite the spin-orbit matrix ele-
ment as

hij
so = i

e

2�
tij �

n,n�i,j
�R j � Rin� · Bn,so, �31�

where Rin=Ri−Rn and where we have introduced a spin-
orbit magnetic field defined by

Bn,so�i → j� =
�

2mc2�i� Zn

4�
0
Ri − Rn
3
�i�� . �32�

In summary, let us write in this approximation a new total
phase for Eq. �6�,

�ij =
e

2�− Bz · �R j � Ri� + �
n,n�i,j

�R j � Rin� · Bn,so� .

�33�

We thus see what the spin-orbit coupling does to the TB
Hamiltonian. It is, in terms of energy, a small effect. Its
effect on the band structure and magnetism will be neglected.

In order to obtain Eq. �22� with B defined as Eq. �24�, one
has to decouple the trace over the spin polarization from the
remaining expression and this automatically makes 	�z� the
overall mobile spin polarization. In reality, the skew scatter-
ing is due to carriers near the Fermi level and therefore 	�z�
should be the average weighted at the Fermi level. We will
return to this point when we attempt to fit Eqs. �22� and �24�
to the experiment in Sec. VI B.

C. Transport coefficients for a simple cubic band

To perform a calculation, one needs to specify a lattice
topology �tmn

0 �. The simplest one is a simple cubic lattice
with nearest neighbor hopping. The dispersion relation is
given, for a d-dimensional system, by 
k=−2t��=1

d cos�k�a�,
where a is the lattice constant of the simple cubic. With this
particular form, we can show27 that the longitudinal and Hall
conductivities at zero frequency can be written, using Eqs.
�16� and �22�, with no approximations, as

	�xx� =
e2

d��ad−2�
s
�� −

�f�E�
�E

� � �Im�	Gs�E,
����2

��
−�




− zD0�z�dzd
dE� , �34�

	�xy
a � =

4e3B

3�d�d − 1�ad−4�2�
s
�� −

�f�E�
�E

�
�� �Im�	Gs�E,
����3
�

−�




− zD0�z�dzd
dE� ,

�35�

where 	Gs�E ,
�� is given by Eq. �17�, d is the number of
dimensions, a stands once again for antisymmetric, and
D0�z� is the density of states of the pure crystal. In three-
dimensions, D0�z� can be found knowing that, for the above

k, for a three-dimensional cubic lattice, the Green function
is28

G0�E� =
1

2�2t
�

0

�

d�xK�x� , �36�

where K�x� is the complete elliptic integral of the first kind,
with x= 4t

E+i�2t cos��� .
Now, we can return to the calculation of the new bands

generated by the hole-spin coupling, and for this, we use the
CPA. Later, we use Eq. �24� to estimate the magnitude of the
skew scattering Hall effect.

V. COHERENT POTENTIAL APPROXIMATION
EQUATIONS FOR A ONE-BAND MODEL WITH

COUPLING TO LOCAL SPINS

In this section, we show how to compute the new energy
bands in the presence of a high concentration of dopants,
magnetic and nonmagnetic. The magnetic coupling between
the Mn spin and charge and the holes in the valence band
creates a new valence band structure. This new Mn-induced
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band will be magnetic at low enough temperatures. Since the
Mn are randomly distributed, we cannot use Bloch’s theo-
rem. One way forward is to use the powerful self-consistent
single site approximation known as the CPA. The CPA
self-energy29 ��E� is determined by the condition that if at a
single site, the effective medium is replaced by the true me-
dium, then the configurationally averaged t matrix produced
by scattering from the difference between the true medium
and effective medium potentials must vanish.29

In the present case, we have localized Mn spins of mag-
nitude S=5 /2 so that there are six possible states Sz
=−5 /2, . . . ,5 /2 and thus seven possible sites in the system
including the nonmagnetic ones. We have for a “spin-up”
carrier the normal nonmagnetic sites with concentration �1
−x� with local site energy ENM and magnetic field interaction
− g*

2
�BBz,m

ext and the magnetic sites with concentration x with

local site energy EM and magnetic coupling
Jpd

2 Sm
z

− g*

2
�BBz,m

ext . However, there is also the possibility of a spin
flip of both the carrier and the impurity with interaction
Jpd

2 Sm
+ . For a “spin-down” carrier, we have ENM at a nonmag-

netic site and magnetic field interaction g*

2
�BBz,m

ext . For a mag-
netic site, we still have EM as the local site energy but the
magnetic coupling is now −

Jpd

2 Sm
z + g*

2
�BBz,m

ext and the spin-flip

interaction is given by
Jpd

2 Sm
− . The concentration of spin car-

rying impurities is defined by x and is
NS

NL
, where NS is the

number of sites with an impurity, while NL is the total num-
ber of sites in the system. The CPA conditions are given
by27,30

�1 − x�	tm↑↑
NM �th + x	tm↑↑

M �th = 0,

�1 − x�	tm↓↓
NM �th + x	tm↓↓

M �th = 0, �37�

and the thermal average of an operator is

	Ôm�Sz��th =
Tr�Ôm�Sz�e−�HS�

Tr�e−�HS�

=

�
Sz

O�Sz�e−�hm�Sz�Sz

�
Sz

e−�hm	Sz�Sz

� �
Sz

O�Sz�P�Sz� . �38�

In order to find the spin dependent t-matrix operator for the
CPA, it is useful to rewrite the Hamiltonian as a 2�2 matrix
in spin space. The t↑↑ and t↓↓ operators are the diagonal ele-
ment of the t matrix. The expressions for the t matrix are
essentially the same as the ones obtained previously by Ta-
kahashi and Mitsui.30 The minor difference is that in the
present case, we include the magnetic field, so that the Zee-
man term enters the t operator. The inclusion of the Zeeman
term is straightforward: one has to add, when N=1, g*

2
�BBz,m

ext

with the appropriate sign in the expressions of Ref. 30. To
calculate the CPA t matrices, we need the effective medium
Green’s function which is no longer dependent on the site m.

Gs�E� � 	Gmms�E�� =
1

N
�
k

1

E − 
ks − �s�E�
. �39�

In the previous equation, Gijs�E� refers to the Green’s func-
tion of a carrier of spin s between sites i and j for one
particular configuration of disorder. The average is over all
possible realization of disorder.

The local density of states is

Ds�E� = −
1

�
Im�	Gmms�E��� , �40�

and the hole-spin concentration with spin s at site m can be
written as

	pms� =� dEf�E�Ds�E� . �41�

Assuming mean field theory for the energy entering the Bolt-
zmann factor, the probability that the local spin has a value
Sz is

P�Sz� =
e−�hmSz

�
Sz

e−�hmSz , �42�

where

hm =
Jpd

2
�	pm↑� − 	pm↓�� − 2�BBz,m

ext . �43�

To compute the CPA self-energy �s�E�, we need to specify
the lattice dispersion of the hole band. In effect, it suffices to
specify the bare pure lattice density of states �D0�E�� since
the real and imaginary parts are simply related. The Fermi
level is determined by the condition that the total hole con-
centration p is known and fixed relative to the total impurity
concentration with x as a maximum value. In general, there
will be fewer holes than dopants, but the number is not
known and remains a fit parameter, so we have

p =� dEf�E��D↑�E� + D↓�E�� . �44�

This now allows us to compute the CPA self-energy self-
consistently and then to determine the new density of states
via Eq. �40� and the local spin polarization and mobile spin
concentration via Eqs. �38� and �41�. Thus, we can determine
the magnetization and the transport coefficients, the resistiv-
ity and the conductivity as a function of B via Eq. �34�, and
the magnetoresistance as the relative change with B. Finally,
the normal and anomalous Hall RH can be obtained via
Eq. �35�.

VI. APPLICATIONS OF THE COHERENT POTENTIAL
APPROXIMATION

For numerical calculations, to simplify the analysis and
for proof of principle, instead of the D0�E� found with Eq.
�36�, we use the Hubbard function, given by
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D0
3D�E� =

2��W − 
E
�
�W2

�W2 − E2, �45�

where W is half the bandwidth and � is the Heaviside step
function. Equation �45� has the same band edge behavior as
the D0�E� calculated with Eq. �36�. With the simple form of
Eq. �45�, the first integration in Eqs. �34� and �35� is analyti-
cally tractable.

A. dc conduction and magnetoresistivity

Here, we calculate the dc conductivity 	�xx� from Eq. �34�
and the magnetoresistance. The calculations have been done
assuming N=1 �thin film�. The calculations for the magne-
toresistance have been performed without taking into ac-
count the spin-orbit interactions.

Figures 1 and 2 are plots of the CPA density of states for
two values of p and Jpd assuming that the scattering is solely
due to the spin potential, that is, when EM =ENM =0. The
diagrams shows the evolution of the spin dependent density
of states as a function of temperature for four different tem-
peratures in each figure. The temperature is measured in
units of the bandwidth W. In Figs. 1�d� and 2�d�, one can no
longer see the spin splitting. The position of the Fermi level
is also shown. Note that all energy parameters are normal-
ized by W �E�=E /W�. From Figs. 1 and 2, one can see that
when the magnetic coupling Jpd is very small, the split band
disappears �see Ref. 27 for details at low Jpd�, whereas in the
opposite limit, the spin bands split off and a pseudogap ap-
pears.

Figure 3 shows the resistivity in zero B field as a function
of temperature with p as a parameter. Results for two values
of Jpd are presented. The results for lower Jpd than 0.35W are
similar to Fig. 3�a�.27 When the impurity bands completely
split from the valence band �for example, for Jpd=0.5W�, the
qualitative behavior changes, as there are now two well de-
fined bands, above and below the Fermi level �impurity and
valence� separated by a gap �see Fig. 2 above and Ref. 27�.
At high hole concentration �p�0.8x�, the system is metallic
and resistance increases with spin disorder, at first rapidly,
and then decreases again above Tc. This is intuitively to be
expected because at first, as temperature increases, the disor-
der increases, and then in the paramagnetic phase, thermal
broadening overcomes the potential scattering disorder and
the lifetime averages out. We should remember that in the
simplest Boltzmann approach the conductivity is given by

�xx = e2�
s
� Ds�E�−

�f�E�
�E

�vs
2�E��s�E�dE �46�

and at low temperatures, depending on the product of the
scattering time and the density of states at the Fermi level. In
an alloy, either quantity can change with B and T and deter-
mine the conductivity. Above Tc, the spin splitting disappears
and the quantities involved are, in the absence of charged
impurity scattering, only weak functions of temperature. At
very low hole concentration, the Fermi level is in a region of
small density of states where we expect localization. How-
ever, CPA is a mean field method and does not produce lo-
calization. Even though the resistance increases with de-
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FIG. 1. Density of states �DOS� for different temperatures, �a�
kBT=0, �b� kBT=5�10−3W, �c� kBT=7.99�10−3W, and �d� kBT
=8.1�10−3W, when x=0.053, ENM =EM =0, �BB=0, Jpd=0.4W,
and p=0.8x. The full line curve is the DOS for the spin-down car-
rier, the dashed one is the DOS for the spin up, and the vertical line
shows the Fermi level. One can see that the density of states is,
relative to a nonmagnetic system, a strong function of temperature.
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creasing density of states at the Fermi level, the conduction
process continues to be a band conduction albeit with a short
relaxation time. Even if the mean free path reaches the lattice
spacing �random phase limit�, the conductivity is still far
greater than hopping conductivity between localized levels.31

The effect of temperature on resistivity above Tc is not too
significant in the nonlocalized intermediate cases. The tem-
perature dependence of the resistance is, in general, a com-
plex interplay of density of states, velocity, and relaxation
time �imaginary part of the self-energy�. The temperature
induced lowering of the charged impurity screening length
�see Eqs. �49�–�51�� is not included here. In this range of
exchange coupling, Jpd does not seem to strongly influence
the structure of the resistivity versus T curves but does
change their magnitude. In Fig. 3, for p=0.1x, a low carrier
concentration, one may see that the resistance increases with
Jpd. In contrast, in the high hole concentration limit p=x,
there is only a relatively weak variation of resistance behav-
ior with Jpd. The complex but regular behavior of resistance
with temperature is a manifestation of Eq. �46�, reflecting the
different elements which determine the value of resistance
for a given set of parameters.
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FIG. 2. Density of states �DOS� for different temperatures, �a�
kBT=0, �b� kBT=2.5�10−3W, �c� kBT=4.5�10−3W, and �d� kBT
=5.4�10−3W, when x=0.053, ENM =EM =0, �BB=0, Jpd=0.5W,
and p=0.3x. The solid line curve is the DOS for the spin-down
carrier, the dashed one is the DOS for the spin up, and the vertical
line shows the Fermi level. One can see that the density of states is,
relative to a nonmagnetic system, a strong function of temperature.
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FIG. 3. Resistivity as a function of temperature for two Jpd, �a�
Jpd=0.35W and �b� Jpd=0.4W for an impurity concentration x
=0.053, ENM =EM =0, and �BB=0, for two values of Jpd, with p as
a parameter.
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Figure 4 shows the resistivity at one temperature as a
function of impurity concentration for varying degrees of
hole doping. The results of Figs. 3 and 4 are based on the
spin scattering model with no additional potential scattering
terms and no electron-phonon interaction. A fit to experimen-
tal data must take these other mechanisms into account as
well. Thus, the complete CPA self-energy should include
other sources of random potential scattering �nonzero values
of ENM, EM�, in particular, the charged impurity scattering
terms discussed below. We should also add, when necessary,
the electron-phonon self-energy �ep�E�. The imaginary part
of the charged impurity self-energy will contribute another
source of temperature dependent lifetime broadening, and
the real part will enter the density of states.

Figure 5 shows the resistivity as a function of temperature
for various magnetic fields, for one value of x, p, and Jpd,
and again with EM =ENM =0. Apart from very low and very
high temperatures, increasing the magnetic field decreases
the resistivity, by favoring the alignment of the impurity
spins. The magnetic field also eliminates the sharp metal-
insulator transition around Tc, replacing it with a smooth
transition.

Figure 6 shows the relative magnetoresistivity defined by

MR �
�xx�Bext� − �xx�Bext = 0�

�xx�Bext = 0�
, �47�

as a function of B, for various value of T. The overall trend
in this exclusively spin scattering model is the strong nega-
tive magnetoresistivity, as one would expect, since increas-
ing the Mn spin alignment reduces disorder and thus reduces
the scattering lifetime, and no other sources of scattering are
considered. However, lifetime is not the only quantity enter-
ing the conductivity. As shown in Eq. �46�, the density of
states D�EF� at EF also plays an important role. There are
also regimes of positive magnetoresistivity. From Fig. 6�a�,
we see that it is also possible for the resistance to increase
with B at low T when the hole density is very low. This is
probably because in this limit, the density of states at the
Fermi level decreases with magnetic field and this effect is
stronger than the concomitant increase of the carrier lifetime
due to the suppression of spin disorder with B. However, we
also know that for low concentrations, when the Fermi level
is at the band edge or in the region of localized states, other
changes arise which are not due to spin-disorder scattering
and which require another approach which is based on local-
ization. In the hopping regime, not describable by CPA, the

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

100

101

102

x

ρ
(m

Ω
cm

) p = 0.1x

p = 0.3x

p = 0.5x

p = 0.8x
p = x

FIG. 4. Resistivity as a function of impurity concentration x, for
varying degrees of hole doping. The other parameters are Jpd

=0.35W, ENM =EM =0, kBT=3.5�10−3W, and �BB=0.
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magnetic field can, for example, squeeze the localized wave
functions and increase the resistance by reducing overlap.
However, it also shifts the energy and the mobility edge such
as to reduce resistance.32 When the calculated resistance is
high and when the Fermi level is in a region of small density
of states �1019 /cm3 eV, we should therefore not trust the
CPA, which gives a good description only of the metallic
regime.

B. Hall effect

By definition, the Hall resistance is given by

�yx =
− Re��yx�

Re��xx�2 − Re��yx�Re��xy�
. �48�

Equation �48�, being a general definition, the normal and the
anomalous spin-orbit generated Hall resistances are included.

In the CPA, the sign of the normal Hall effect is not de-
termined by a simple relationship but depends on the disper-
sion of the lattice and the behavior of the real part of the
Green’s function at the Fermi level.15,27 A full analytical
analysis of the CPA Hall sign is beyond the scope of this
paper but we can state that there is no simple rule. The clos-
est to one is that RH is electronlike when the density of states
increases with energy and holelike when it decreases. In the
approximation of skew scattering, the sign of the anomalous
effect follows the sign of the normal effect as long as the
carriers at the Fermi level are polarized in the same direction
as the total magnetization. This is true here, as can be seen
from Fig. 1. The majority spin band at the Fermi level has
the same sign as the overall magnetization, which is domi-
nated by the localized spins. Thus, in the phase addition ap-
proximation of Eq. �33�, in order to get the right sign, it is
essential to keep the correlation between the spin and energy.
The decoupling of the spin magnetization out of the Kubo
formula can give rise to the wrong sign. Here, the overall
polarization, found using Eq. �41�, is opposite to the direc-
tion of the field as it should be. We correct for this effect by
assuming that 	�z� is in the same direction as the overall
magnetization.

Figure 7 shows, for a selected class of parameters, the
overall behavior of the Hall resistivity in the skew spin scat-
tering model. In order to explain the experimental data, we
need �

�s

1
2t =0.2, which means that the skew scattering energy

has to be 0.4 times the tight-binding overlap. This is a very
�too� strongly enhanced skew scattering rate. It suggests that
the correct interpretation of the AHE in GaMnAs is most
likely the intrinsic mechanism proposed by Sinova et al.3 In
this work, the AHE is due to the intrinsic spin-orbit field and
relies on the multiple band nature of this class of semicon-
ductors. The usual simple nearest neighbor tight-binding
model only gives a skew scattering contribution. The univer-
sality and order of magnitude of the AHE in ferromagnets
suggest that the intrinsic process dominates in most cases.

At high temperature, the magnetism disappears. The nor-
mal Hall conduction, linear in B field, is recovered �see the
kBT=0.015W results Figs. 7�a� and 7�b��. Note that for sim-
plicity of notation, we refer to the applied field in the figure
as B, even if it was defined otherwise previously.

VII. EXPERIMENTAL RELEVANCE

Figure 8 shows results of the CPA calculations for the
three transport coefficients: resistance, magnetoresistance,
and Hall effect in a range of parameters for which a behavior
close to the ones observed experimentally by Ruzmetov et
al.33 and Ohno et al.34 is observed. We have added a constant
contribution to the resistivity so that the relative change in
resistivity, such as discussed in connection with Fig. 3, be-
tween Tc and T=0 is of the same order of magnitude, as
observed in the experiment. The constant term is chosen to
be of the same order of magnitude as the spin scattering rate.
The qualitative temperature structure is satisfactory in the
“metallic regime” of the material, but because we have ne-
glected the charged impurity scattering, we are underestimat-
ing the temperature drop of the resistivity with temperature,
at higher temperatures. The latter is due to a reduction in
screening length when the density of states at the Fermi level
increases �see Eq. �51��. Figure 8 also illustrates the strong
temperature dependence of the magnetoresistance, which
reaches 40%–50% at kBT�0.0057W �this is �60 K for W
=1 eV�, and how it is intimately connected to the magnetic
order, as observed experimentally. For an even clearer pic-
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FIG. 7. Hall resistivity as a function of the applied magnetic
field for two carrier concentrations, �a� p=0.1x and �b� p=0.8x, for
an impurity fraction x=0.053, ENM =EM =0, and Jpd=0.35W, with
T as a parameter.
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ture of the connection, see Fig. 5. The reader should note that
Van Esch et al.35 have observed magnetoresistances of
�500% at T=4 K and 50% at T=20 K in their more resis-
tive samples with ��1 � /cm. In this sample, the magneti-
zation dropped by �100% between 4 and 20 K.

Hwang and Das Sarma36 and Lopez-Sancho and Brey37

quite rightly pointed out that when charged impurities are
present, they will normally dominate the scattering rate and
the temperature dependence of resistance in a wide range of
parameters. They then decided to use two different conduc-
tivity models for the transport in Mn-doped GaAs, one to
explain the temperature dependence of the resistance which
emphasizes charged impurity scattering and one for the mag-
netoresistance which emphasizes spin scattering. We believe
that this is not necessary. It is enough to add the configura-
tionally averaged charged impurity self-energy to the basis
band dispersion 
ks→
ks+�ks, and then to neglect, in the
simplest limit, the real part of the impurity scattering self-
energy �ks. Thus, we replace the CPA self-energy �s, which
appears in Eq. �16�, by

Im��s�E�� + Im��ks�E�� = Im��s�E��

+ �� dk�� 1

2�
�3


Vk−k�

2

��1 − cos �k−k���E − 
k�s� ,

�49�

where �= 2�
� Ni, with Ni the impurity concentration, and

Vk−k� =
4�Zimpe

2



0
k − k�
2
1

1 + �qsc/
k − k�
�2 . �50�

In Eq. �50�, Zimp is the impurity charge number, and

qsc
2 = 4�e2�

s
� dEDs�E�−

�f�E�
�E

� �51�

is the inverse screening length. Since the results of Sec. VI
show that Ds�E� at the Fermi level change with temperature
and field, the screening length will change as well. Note that
usually, in Boltzmann transport, one does not take into ac-
count the effect of the real part of the self-energy �the imagi-
nary part gives the scattering� on the actual band structure
because the concentration of dopants is low. Here, the con-
centration is not low. The real part should, in principle,
modify the band gap and effective masses and can be in-
cluded in our formalism.

We agree with Hwang and Das Sarma36 that the complete
problem in parameter space is enormously complex. In ef-
fect, we should want the impurity scattering to only represent
an additional self-consistent, density of states dependent,
lifetime process. A fully self-consistent Coulomb potential �
spin, multiband CPA, is far too complex and of little value.
In addition, the CPA band theory cannot account for the hop-
ping regime, as pointed out in the previous section.

VIII. PROBLEM OF THE INTRINSIC AND EXTRINSIC
HALL EFFECT

In the Kane-Luttinger theory of Jungwirth et al.,2 the Mn
dopants only cause a lifetime broadening and no change to
the Kane-Bloch band structure. In this formalism, the intrin-
sic spin-orbit interaction is Bloch invariant and only causes
band mixing. All disorder is treated only as a lifetime effect.
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FIG. 8. Transport coefficients which can be directly compared to
the experiment, �a� �=�0+��T�, �b� MR�B�, and �c� �H�B�, for
ENM =EM =0, Jpd=0.35W, and p=0.8x. Two possible constant con-
tributions are shown in �a�, the solid line curve has �0

=10 m� cm, and the dashed line curve has �0=3.6 m� cm.

TRANSPORT IN THE METALLIC REGIME OF Mn-DOPED… PHYSICAL REVIEW B 77, 115211 �2008�

115211-11



This is not so in the CPA where the dopant scattering causes
a substantial renormalization of the band structure via the
real part of the self-energy and indeed gives an explanation
of the magnetism. The spin-orbit coupling produces new
terms in the Hamiltonian which allow the electrons jumping
or tunneling from one site to the next site to experience the
electric field of the neighboring atoms. The three-site pro-
cesses we invoke are not normally included in the tight-
binding modeling of semiconductors. They represent only
small modifications of the band structure, much smaller than
the on-site spin-orbit admixture. The anomalous Hall mecha-
nism in one-band tight binding is basically one of “skew
scattering,” except that the jump is always from orbit to or-
bit, and the effective magnetic field can only come from
another third site. We have seen that the one-band TB de-
scription is inadequate to describe the AHE in diluted mag-
netic semiconductors. On the other hand, the multiple band
Kane and/or Kohn-Luttinger38 approach seems to work well.
It gives the right order of magnitude with an intrinsic AHE.
This suggests that a TB modeling of the AHE must include
the multiple band aspect and at least a second nearest neigh-
bor overlap. Since, for example, a 5% GaMnAs alloy cannot
have a true Bloch band structure, in the orbital description, it
is the short range many orbital aspect which must give rise to
the intrinsic AHE.

IX. CONCLUSION

We have presented a CPA theory which could explain the
magnetism in Mn-doped semiconductors in the metallic re-
gime and allows one to calculate the transport parameters.
The numerical evaluation of resistance, magnetoresistance,
and Hall coefficient, normal and anomalous, show that the
overall trends observed experimentally are reproduced by the
CPA. The power of the method lies in its simplicity. All the
information is contained in a spin and energy dependent self-
energy �s�E�. In good approximation, we may add the effect
of the charged impurity and electron-phonon lifetime correc-

tions to the calculated CPA self-energy. Of the two, the first
is the most important addition because it explains why the
experimental resistance decreases at high temperatures �in
general, more strongly than shown in Fig. 8�a��, when the
ferromagnetism has reduced to paramagnetism, and spin-
disorder scattering should have reached its highest value.
The “small” resistance drop at high temperature seen in Fig.
8�a� is due to the CPA band-structure renormalization. The
CPA and t-matrix methods can be extended to treat magnetic
clusters and evaluate effective localized spin-spin coupling
mediated by the band.

We have also demonstrated how to include charged impu-
rity scattering within the same formalism. The central aim of
this paper was to achieve an understanding of the important
mechanism which determines the conductivity behavior. For
this purpose, we have used a one-band approach which is
adequate to understand the conductivity. For optical proper-
ties and the intrinsic AHE, the many band aspects are essen-
tial.

The AHE has been modeled as an extrinsic effect in the
framework of skew scattering. We did this using the tight-
binding language. The intrinsic AHE, as invoked by Jung-
wirth et al.,2 cannot be derived using a nearest neighbor TB
formalism, and it is not clear how to recover it in the TB
formalism. The problem of the intrinsic AHE and the TB
model is an interesting one. It should be reexamined in detail
because so far, the nearest neighbor tight-binding methods
have proved useful as band-structure descriptions of semi-
conductors.
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